Exemplary data of machine learning models for the flex_resample_metrics() function
Source:R/models.R
models.Rd
Models are created with 10-fold CV 3 x repeated in caret (see also the source section of this documentation). The output is saved as .rda file. This is to prevent the necessity of including the caret package as an additional dependency to the datscience package
Usage
data(models)
Source
# Create Example Classifiers in the Iris Dataset
set.seed(7)
data(iris)
# Settings for the Cross-Validation
control <- caret::trainControl(method="repeatedcv", number=10, repeats=3,
summaryFunction = caret::multiClassSummary)
# Train Decision Tree
decision_tree <- caret::train(Species~., data=iris, method="rpart",
trControl=control, tuneLength=5)
# Train k-Nearest Neighbors
knn <- caret::train(Species~., data=iris, method="knn",
trControl=control, tuneLength=5)
# Create a list of objects
models <- list("Decision Tree" = decision_tree$resample,
"KNN" = knn$resample)
Examples
data(models)
flex_resample_metrics(models, table_caption = NA)
#> a flextable object.
#> col_keys: `Algorithm`, `Tune`, `Accuracy`, `Kappa`, `Mean Bal. Acc.`, `Mean Sens.`, `Mean Spec.`
#> header has 1 row(s)
#> body has 6 row(s)
#> original dataset sample:
#> Algorithm Tune Accuracy Kappa Mean Bal. Acc. Mean Sens. Mean Spec.
#> 1 Decision Tree min 0.800 0.700 0.850 0.800 0.900
#> 2 Decision Tree mean 0.933 0.900 0.950 0.933 0.967
#> 3 Decision Tree max 1.000 1.000 1.000 1.000 1.000
#> 4 KNN min 0.867 0.800 0.900 0.867 0.933
#> 5 KNN mean 0.978 0.967 0.983 0.978 0.989